
AC I
La se r-C o m p o ne nts

Software Manual

Software for laser marking

Magic Mark
© ACI Laser GmbH

ACI Laser GmbH
Leubinger Str. 19

D-99610 Sömmerda

Fon +49 (3634) 3226-0
Fax +49 (3634) 3226-26

www.ACI-Laser.de
info@ACI-Laser.de

© ACI Laser GmbH 2000

This software manual or excerpts out of it are not to be reproduced in any form (neither as photocopie,
print, microfilm nor in any other procedure) without written permission of ACI Laser GmbH. ACI reserves

the right to update these instructions at any time and without advance notice.

AC I
La se r-C o m p o ne nts

Contents
1. Delivery

1.1. Specifications
1.2. Software manual
1.3. Manufacturer
1.4. Warranty

2. Installation of Magic Mark
2.1. Requirements
2.2. Installation under Windows®

3. Introduction in Magic Mark
3.1. Software screen surface
3.2. Structure of menu

4. Basic elements of programming
4.1. Basic elements

Program documentation
Control elements
Naming variables

4.2. The Visual Basic window
Visual Basic menu
Drop-down menu File
Drop-down menu Editing
Drop-down menu Object catalogue
Drop-down menu 5Start/Stop
Drop-down menu Debugging
Drop-down menu User Dialogue

5. Program development
5.1. Types of variables
5.2. Constants
5.3. Fields
5.4. Loops

For-Next-Loop
While Loop
Do-Loop

5.5. Branches
If –Then–Else
Select Case

5.6. Procedures and functions

AC I
La se r-C o m p o ne nts

6. Creating dialogue windows
6.1. User dialogue menu
6.2. Function Select
6.3. Function Group Box
6.4. Function Text
6.5. Function Text Box
6.6. Function Check Box
6.7. Function Option Button
6.8. Function Type 1 List Box
6.9. Function Type 2 Drop List Box
6.10. Function Type 3 Combo Box
6.11. Function Picture
6.12. Buttons

OK Button
Cancel Button
Push Button

7. Special functions
7.1. Date/ time
7.2. Manipulation and handling of texts
7.3. Mathematical operations
7.4. Operators
7.5. Handling files

Sequential files
Files with direct access

7.6. Input Box
7.7. Message Box
7.8. Popup Menu
7.9. Function Dialogue

8. Laser and scanning control system
8.1. Marking parameters
8.2. Control system
8.3. Ma rking

Rotation
Vector
Position
Rectangle
Barcode
PDF 417 Code
Data Matrix Code
Circle
Text
Graphics

AC I
La se r-C o m p o ne nts

9. Communication
9.1. Start Marking and End Marking

10. Error treatment

APPENDIX

A – Laser commands
B – Types of barcodes

AC I
La se r-C o m p o ne nts

1. Delivery

1.1. Specifications

Your software package contains three
installation disks, which are called as
follows:

Magic Mark Disk 1
Magic Mark Disk 2
Magic Mark Disk 3
Target.ini

Before working with Magic Mark you
have to make a backup copy. For more
detailed information about that please
refer to your Windows Manual or to the
Windows Online Help.

1.2. Software Manual

This software manual is part of the
system. Please keep it carefully since it
contains useful details about
programming and the optimal operation
of the laser.

In case the laser is sold, please hand
over these instructions.

ACI reserves the right in accordance
with technical process to update this
manual at any time and without
advance notice.
These instructions have been drawn up
according to the latest technological
developments.

Please read carefully through this
manual.

1.3. Manufacturer

ACI Laser GmbH
Leubinger Str. 19
D- 99610 Sömmerda
Germany

Fon +49 (3634) 3226-0
Fax +49 (3634) 3226-26

www.ACI-Laser.de
info@ACI-Laser.de

1.4. Warranty

Manufacturer, programmer and author
have carefully created the software as
well as the corresponding manual.
Nevertheless, any right to claim under
guarantee regarding software and
manual will be refused, in particular, if
Magic Mark does not correspond to the
requirements of the customer or in case
of any occurring errors. Neither
manufacturer, nor programmer or
author are reliable for damages,
destruction or consequential damages
caused when using the software.

AC I
La se r-C o m p o ne nts

2. Installation of Magic Mark

2.1. Requirements

To enable the operator to use Magic Mark
successfully the following equippings are
necessary:

• IBM-compatible Pentium PC
• operating system WIN 98 or WIN NT
• 64 MB RAM
• 100 MB free space on harddisk
• a serial interface
• a parallel interface
• monitor (recommended: 17 inch)
• keyboard, mouse

2.2. Installation under
Windows

Magic Mark is installed under Windows on
the harddisk.

Proceed as follows:

1. Switch on PC

2. Load Windows

3. Insert Magic Mark program disk 1
into floppy A or B.

4. Click the START button by using the
mouse and choose „EXECUTE“. A
WINDOWS box opens with a
command line to be edited freely.

5. Enter the following into this command
line depending on the floppy used:

A:\Setup or B:\Setup

6. Confirm with OK.

Start menu of Windows 98

7. Now, follow further installing
instructions.

8. Choose the program directory
desired. As a standard it is defined as
follows:

C:\Programme\MagicMark

9. When installing MagicMark samples
can be installed as well. In this case
you choose:

Installation complete

If not, you choose:

Installation without Samples

10. State a name of the laser program
which should appear in the menu
Programs. As a standard MagicMark
appears.

11. As soon as the complete installation
has been finished you get the
message:

Click Finish to complete Setup.

The installation may be interrupted at any
time by striking ESC.

AC I
La se r-C o m p o ne nts

3. Introduction in Magic Mark

3.1. Software screen
surface

Magic Mark has two functions. The one
is to create marking programs, the
other serves to supervise and control
the laser. This manual gives detailed
information about creating marking
programs.

For more details about control and
supervision of the laser please refer to
the operating manual.

Software screen surface Magic Mark

Buttons Magic Mark

3.2. Structure of menu

Creating a new marking project

By using this button ya new marking
project type *.lcp is created. A marking
project consists of at least two
components, the project itself and a
macro type *.bas belonging to it.

Please take care that both project and
basic macro are saved into the same
directory.

Open marking project

By using this button you open an
already existing marking project
including the basic macro belonging to
it.

Save marking project

By using this button you save your
marking project.

Help functions

By using this button you activate the
online help

Call macro editor

This button is used for creating and
editing basic macros. You reach the
programming mode. For more
information please refer to chapter 4ff.

File New

File o pen

File sa ve

He lp func tio n

CAD-p rog ra m

Prog ra m m ode

Pa ram e te r d efinitrion

La se r on/o ff

Shutte r lo c k

Pilo t la ser o n/o ff

Pre view m od e

Lase r Run

Lase r Sto p

AC I
La se r-C o m p o ne nts

Basic macro editor

Definition of parameters

This menu enables to define different
marking layers with regard to varying
laser parameters.

Defintion laser parameters

Key switch laser ON/OFF

This button serves to swich on/off the
laser by means of a defined password.

Locking Shutter

By using this button you lock the
shutter. It is not possible to open it
again.

Pilot laser ON/OFF

By using this button you
activate/deactivate the pilot laser.

Preview mode

In the preview mode the marking jobs
created can be shown on screen. For
this, you have to activate the button and
start the marking job.

Run marking job

Start your marking job, i.e. the preview
by using this button.

 Stop marking job

To stop a marking during the program
run time you need to use this button.

AC I
La se r-C o m p o ne nts

4. Basic elements of programming

After having explained in detail the laser
relevant functions of MagicMark the
basic elements for programming under
MagicMark will be described in the
following chapters.
Core component of Magic Mark is Visual
Basic as programming language
enabling to create complexe program
runs.

4.1. Basic elements

Program documentation

As this is necessary in any other
programming language, MagicMark
requires to have the program to be
developed documented sufficiently. This
demands some efforts when creating
the program, but has a favourable effect
later on in case of a possible trouble
shooting or changings of the program. In
addition, the program is made more
transparent to third persons.

The documentation can be made as
uncoded text, that means in colloquial
speech. Tasks and features of variables
should in particular be documented
sufficiently.
Remarks and documentations can be
introduced under Visual Basic with the
following marks: „ ‘ “ .

Wrong: program without documentation

Right: program with documentation

Control elements

Control elements are necessary to show
information on screen or to enable the
user to enter inputs. Such control
elements are for example buttons and
list boxes.

Naming variables

When naming variables for a further
optimizing of the program code it is most
important to choose a meaningful name
indicating already the function of the
variable by means of its name.
Abbreviations are proved to be less
useful as their meaning is forgotten too
fast.

AC I
La se r-C o m p o ne nts

Appropriate naming of variables

4.2. The Visual Basic
window

The following chapter explains in detail
the different functional possibilities of the
Visual Basic window.

The Visual Basic window

Visual Basic menu

The Visual Basic menu

The Visual Basic menu contains all
important functions required to prepare
the basic file.

First, let us look at the ListBox Object.
This box indicates the active form or the
active control element. However, the
present event procedure of the control

element to which belongs the program
code is entered into the ListBox Proc.

Drop-down menu: File

This menu contains all functions
required to handle files

 Create new project

By means of this symbol a new project
can be created.

When creating a new project 4 types of
modules are proposed:

• New Macro
• New Code Module
• New Object Module
• New Class Module

This manual basically explains how
creating a new operable program (New
Macro). The modules Code, Object und
Class are object-orientated program
modules which alone are not capable to
operate.

 Open already existing project

By clicking this symbol you open an
already existing project. Choose the file
requested in the directory.

 Save

The menu selection point -Save project-
is used to save a created project. In
case there is not yet a name stated for

AC I
La se r-C o m p o ne nts

the project this must be done before
saving the project. If the project has
already a name it can be saved without
any confirmation.

If several projects are handled these can
be saved altogether with -Save all-.

Print

By clicking this symbol the presently
opened job will be printed at a printer
connected. The installation of the printer
must be carried out under Windows.

Drop-down menu: Editing

 Cut-out/copy

This command cancels marked contents
of the program. The contents cancelled
remains in the interim memory.

Copy

In opposite to the command cut-out
marked parts of the program are kept.
The contents is taken into the interim
memory and remains available for
subsequent treatment.

Insert

This command effects that cut-out or
copied parts are inserted at the current
position.

 Undo/redo

The option Undo allows to cancel
changings made after having saved the
last time. In case that too many
changings have been cancelled these

can be reconstructed with the command
Redo.

Drop-down menu: Object catalogue

Object catalogue

By means of this object you reach the
object catalogue with object libraries,
class libraries, classes, methods,
features, occurrences and constants
which can be used in the code.
Furthermore, the modules and
procedures are shown which have been
defined for the project.

Drop-down menu: Start / Stop

Start

This command enables to start the
current project under development
environment.

Interruption

Has a program been started under the
development environment the programm
will be interrupted at the current position
by activating this command.

AC I
La se r-C o m p o ne nts

Stop

The current program stops and changes
into the editing mode.

Drop-down menu: Debugging

The debugger as an auxiliary aid
enables to check every single instruction
during the execution of the program. It
makes possible among others to check
the contents of variables, the proper
program run and serves to localize
programming faults.

Step Into (single step)

This function enables to process a
program step by step. If the program
contains procedures it will branch into
them. This procedures or functions are
also processed step by step. Calling this
function is possible by using F8.

Step Over (procedure step)

This function corresponds to function
Step Into, however possibly included
procedures and functions are executed.

Step Out (finish procedure)

This command is only available in the
break mode. When activating this
function the current procedure will be
executed and stopped again at the next
program line to be executed.

Command line indicator

If the program is processed in the
debugging mode this symbols signalizes
the current command line.

 Breakpoint on / off

This command enables to insert a
breakpoint at the current position, The
program will then during the execution
change into the break mode. If you use
this function on a line on which a
breakpoint has already been fixed, this
will be cancelled.

Indicate value

This command used to indicate the
current value is only available in the
break mode.

Drop-down menu: User Dialogue

User Dialogue

This command enables to create user-
specific programs. That means that user
interfaces in Windows-format can be
created of one’s own. You will find a
detailled description of this function in
chapter 8.

AC I
La se r-C o m p o ne nts

5. Program development

This chapter compares different types
of variables and explains terms like
constants, loops, branches and
functions.

5.1. Types of variables

Variables are parameters characterized
by a name whose contents is
changeable as already expressed in the
name itself. Variables consist of two
parts, a name and the value of the
variable. The value can change during
the program execution, the name of the
variable on the other hand is firmly
defined.

Variables are required to save and or to
handle results of calculations or inputs
from the program user.

Under Magic Mark – Visual Basic it is
not necessarily required to declare
variables. However we recommend to
declare basically all variables to be
processed. The declaration of a
variable is meant to be the assignment
of a type of variable (string, integer,
etc.).

If you fail to declare the variables
program faults may occur which are
difficult to be discovered.

The following types of variables can be
used:
(1) Byte

range: 0 up to 255 (1byte)

integer numbers acc. to ASCII –
character set

(2) Boolean
fange: true/false (2bytes)
state true/false

(3) Integer
range: -32768 up to +32767
(2bytes)
integer variable without decimal
place

(4) Long
range: -2.147.438.648 up to
+2.147.483.647 (4bytes)
integer without decimal place
with bigger range than integer

(5) Single
range negative:
-3,402823*1038 up to -
1,401298*10-45

range positive:
1,401298*10-45 up to
3,402823*1038

(4bytes)
floating point digit, for
calculations with decimal places

(6) Double
Range negative:
-1,79769313486232*10308 up to -
4,94065645841247*10-324

range positive:
4,94065645841247*10-324 up to
1,79769313486232*10308

(8bytes)
floating point digit, , for
calculations with decimal places

(7) Currency
range:

AC I
La se r-C o m p o ne nts

-922.337.203.685.477,5808 up
to
922.337.203.685.477,5807
(8bytes)
mixture between integer and
floating point digit for
calculations up to the fourth
decimal place.

(8) Date
range date:
01.01.100 till 31.12. 9999
range time:
00:00:00 till 23:59:59
(8bytes)
Used for indicating date and
time

(9) String
range:
10bytes + 2bytes/character
string format, length of strings
can be unlimited.

(10) Variant
Range of numerical values:
16bytes
range for strings:
22bytes + 2bytes/character
Default - type of variable, able to
change into any type of variable.
The variables are converted
automatically. The use of this
type of variable refers to
variables, where the type may
change during the program
execution.

Declaration Designation
Dim digit As Integer declares digit as

integer
Dim character As String declares character as

a string
Dim value declares value as

variable type Variant

Examples for declarations of variables

The declaration of the variables can
also be effected by means of a
shorthand.

Symbol Type of variable
% Integer
& Long
! Single
Double
@ Currency
$ String

 Symbols for declaration of variables

It is advisable to use these symbols
thus effecting a better layout of the
program.

Declaration Designation
Dim digit% declares digit as

integer
Dim character$ Declares character as

string

Declaration of variables with symbols

The next two examples finally exemplify
the importance of the declaration of
variables:

Sub Main

Dim Zahl!
Dim Ergebnis!

Zahl! = 2.5

Ergebnis! = Zahl! * Zahl!

Debug.Print “Ergebnis =“ & Ergebnis!

End Sub

Ergebnis = 6.25

Program example 1

AC I
La se r-C o m p o ne nts

Sub Main

Dim Zahl%
Dim Ergebnis!

Zahl% = 2.5

Ergebnis! = Zahl% * Zahl%

Debug.Print “Ergebnis =“ & Ergebnis!

End Sub

Ergebnis = 4

Program example 2

Both of the programs lead to different
results because of varied declarations
of variables. In example 1, floating point
digits are multiplied, whereas in the
second example integer numbers are
multiplied. By doing so it is rounded off
up to x.50.

5.2. Constants

Constants, like variables, consist of two
parts, the name and the value.
However, neither name nor value are
changeable during the execution of the
program.
Constants may assume any type of
variables.

(1) Const Pi! = 3.14

The value 3.14 is assigned to the
constant Pi.

 (2) Const Pi% = 3.14

In this case the value 3 is assigned to
the constant Pi only.

5.3. Fields

Fields are lists of variables. Thus, one
field contains several variables which
can be one-dimensional, but also
multidimensional.

If the size of a field remains constant
during the execution of the program this
is called an invariable field.

Under Magic Mark fields are used
regularly when marking paletts with 5
parts for example.

Sub Main

Dim Text(5) As String

Text(0) = “Teil A“
Text(1) = “Teil B“
Text(2) = “Teil C“
Text(3) = “Teil D“
Text(4) = “Teil E“

Debug.Print Text(0)
Debug.Print Text(1)
Debug.Print Text(2)
Debug.Print Text(3)
Debug.Print Text(4)

End Sub

Teil A
Teil B
Teil C
Teil D
Teil E

Program example 3

Example 3 shows an one-dimensional
field, in which the variable „Text“ has
five elements of type String assigned.

AC I
La se r-C o m p o ne nts

The following chart shows once again
the structure of the one-dimensional
field described.

x-axis
0 1 2 3 4

part A part B part C part D Part E

One-dimensional field - Text

If the field is now also extended into the
y-axis you get a two-dimensional field.
Thus, two values are necessary to
declare a variable from a two-
dimensional field. The following
program example exemplifies the
functioning of the two-dimensional field.

Sub Main

Dim x, y As Integer
Dim Feld(3,4) As Integer

for x = 0 to 2
for y = 0 to 3

Feld(x,y) = x * y
Debug.Print Feld(x,y)

next y
next x

End Sub

Program example 4

x-axis
Field(x,y) 0 1 2

0 0 0 0

1 0 1 2

2 0 2 4y-
ax

is

3 0 3 6

Two-dimensional field

Variant as an already mentionend type
of variable has a special meaning to
fields. This type can be used for all

other types of variables shown in the
following example:

Sub Main

Dim Feld(2) As Variant

Feld(0) = “Dies ist ein Text“
Feld(1) = 100

Feld(0) = Feld(0) & “ und keine Zahl“
Feld(1) = Feld(1) * 5

Debug.Print Feld(0)
Debug.Print Feld(1)

End Sub

Dies ist ein Text und keine Zahl
500

Program example 5

5.4. Loops

For-Next-Loop

The For-Next-Loop is meant to be a
counter loop. Starting value, final value
and optionally step size are defining
this type of loop, the step size being
positive, i.e. negative. Thus, it is
possible to realize incrementing or
decrementing loops. If there is no step
size stated this will automatically be set
to value 1.

If, for example, the loop should be
quitted earlier because of a certain
criterion, this is possible by means of
the command Exit.

AC I
La se r-C o m p o ne nts

Syntax:

For Variable = Start To End [Step Schrittweite]
...
[Exit]
...

Next Variable

The following program example shows the
possibilities of this type of loop.

Sub Main

Dim x!
Dim Ergebnis!

For x! = 0 To 1 Step 0.2
Ergebnis! = x! * x!
Debug.Print Ergebnis!

Next x!

End Sub

0
0,04
0,16
0,36
0,64
1

Program example 6

While Loop

The While-loop is meant to be a
„Boolsche“ loop. This kind of loop is
repeated as long as the result is true
and offers the possibility that the loop is
never quitted. A practice-oriented
application example is to wait for a
laser starting signal initializing the
marking process.

Syntax:

While Bedingung
...

Wend

In program example 7 a variable is
reduced by 1 each. The loop is
repeated as long as the if-condition is
true.

Sub Main

Dim i%

i% = 5

While i% > 2
i% = i% - 1
Debug.Print i%

Wend

End Sub

4
3
2

Program example 7

Do Loop

The Do-loop is working similiarly to the
While-loop. It is a „Boolsche“ loop, too.
Main difference is that the Do-loop is
passed at least one time, as the if-
instruction comes not before the end.

Syntax:

Do
...
[Exit]

Loop Until Bedingung

AC I
La se r-C o m p o ne nts

Sub Main

Dim i%

i% = 5

Do
i% = i% - 1
Debug.Print i%

Loop Until i%<2

End Sub

4
3
2
1

Program example 8

The so-called Endless loop is a special
form of the Do-loop

Syntax:

Do
...

Loop

This kind of loop should be avoided as
a controlled abnormal termination is not
possible.

5.5. Branches

Branches are used to make case
distinctions during the execution of the
program. There are two main types of
branches. In case of a Yes/No decision
the If-Then-Else-Branch is used. In
case you like to distinguish between
several selection possibilities then
using a Select-Case-Decision is
recommended.

If-Then-Else

Syntax 1:

If Bedingung Then Anweisung
...

End If

Syntax 2:

If Bedingung Then Anweisung Else Anweisung
...

End If

Syntax 3:

If Bedingung Then
...
Elseif Bedingung Then
...
Else
...

End If

Example program:

Sub Main

Dim i!
i! = 5

While i! > -2
 If i! > 2 Then
 Debug.Print "i ist " & i! & "; also größer als 2!"
 Else
 Debug.Print "i ist " & i! & "; also kleiner als 2!"
 End If
 i! = i! - 1.5
Wend

End Sub

i ist 5; alo größer als 2!
i ist 3,5; alo größer als 2!
i ist 2; alo kleiner als 2!
i ist 0,5; alo kleiner als 2!
i ist -1; alo kleiner als 2!

Program example 9

AC I
La se r-C o m p o ne nts

Select Case

A Select Case – branch is meant to be
a case distinction enabling to select
between several alternatives. The
follwing example program exemplifies
that, according to variable workpiece, a
distinction is made so that various
functions are called and thus different
contents can be marked.

Sub Main

Dim Werkstück As Integer

Werkstück = 1 ' Auswahl Nr. 1

Select Case Werkstück
 Case 1
 Marking1 ' Funktionsaufruf Marking1
 Case 2
 Marking2 ' Funktionsaufruf Marking2
 Case 3
 Marking3 ' Funktionsaufruf Marking3
 End Select

End Sub
Sub Marking1
 DCS.Circle(9,0,0,10,0,360,False)
 ‘Kreis zeichnen
End Sub
Sub Marking2
 DCS.Rectangle(9,0,0,8,8,False)
'Rechteck zeichnen
End Sub
Sub Marking3
 DCS.Vector(0,0,10,10) ' Vektor zeichnen
End Sub

Program example 10

The general syntax for this command is
defined as follows:

Syntax:

Select Case Ausdruck

Case 1
...

case 2
...

Case 3
...

Case Else
...

End Select

5.6. Procedures and
functions

To create the program code more
clearly arranged it is advisable to
summarize independent and finished
parts of the program in sub-functions or
procedures. Every single sub-function
should be kept most clearly visible and
short. Often, a written function or
procedure can be divided again in small
functions or procedures.

If programs are developed consistently
according to that the programmer has
in general no difficulties in coping with
the code. Furthermore, errors are
localized very fast and expansions of
the program are easy to realize.

Procedures

Syntax:

Sub Prozedurname (Param1 As ... – ParamN As...)
...

End Sub

Let us look again at program example
10. In this program, several procedures
have already been used.

AC I
La se r-C o m p o ne nts

In the main program the procedure
Marking1 is called. The program
branches at this position in the main
program into the procedure Marking1
and executes this. In this case a circle
is marked with the laser (refer to
chapter 8). Naturally, variables can
also be passed on at procedures. The
following example exemplifies this:

Sub Main

Dim Radius%
Radius%=15

Marking1(Radius%) ' Funktionsaufruf Marking1

End Sub
Sub Marking1(Radius%)
 DCS.Circle(9,0,0,Radius%,0,360,False)
 'Kreis zeichnen
End Sub

Program example 11

In this example the variable Radius is
transferred when calling the procedure.

Functions

Functions are meant to be procedures
returning a value to the main program.

Sub Main

Dim i%
Dim Ergebnis As Double

i% = 10

Ergebnis = Sqr (Summe(i%)) ' Wurzel aus Funktion
Summe

Debug.Print "Ergebnis = " & Ergebnis

End Sub
Function Summe(i%)
 Summe = i% + i%
 Debug.Print i%
End Function

10
Ergebnis = 4,47213595499958

Program example 12

Program 12 calculates the square root
from the returned value of the function
Sum. In function –Sum- the sum is
calculated out of the variable i and
itself.

AC I
La se r-C o m p o ne nts

6. Creating dialogue windows

Components for the in- and output of
texts and variables have been left out in
the programs created so far. To create
window screen surfaces the structure
and inclusion of dialogue windows will
be explained in the following.

6.1. User dialogue menu

The user dialogue menu has already
been mentioned in chapter 6.

Button: User Dialogue in the
Visual Basic program window

User dialogue menu

First, a quite easy dialogue window will
be programmed. For this, you have to
create a new Basic Project. Now, click
on button User Dialogue. On the left
side you will find a series of control
elements. Click on button OK. The
mouse pointer is now changing into a
coordinate axis. Now, move the mouse

to the position of the window where the
button should be inserted. Do leftclick
and fix any size of the button. Release
left-click as soon as the size appears
right.

OK-button

If you wish to keep the window defined
like that click button Confirm.

Button: Confirm

Then, the listing closes, you reach the
program code again. You will notice
that some lines have automatically
been inserted into the program code
defining your window.

AC I
La se r-C o m p o ne nts

Sub Main

 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1
 OKButton 110,98,180,49
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

Program example 13

When executing the program your
dialogue window defined opens waiting
for confirmation per mouse-click on the
OK-button.

To realize an operable dialogue window
it is necessary to insert at least an OK-
button, a PUSH-button or a CANCEL-
button.

In the following, the upper menu will be
explained in its most important points.

Menu

Button: Edit Item Properties

By clicking this symbol the features of
the dialogue window are defined. The
window can be centred by activating
the control box Centered. If the
dialogue window should not be centred
you have to switch off the control box
and define the size of the window
requested. The size of the window is
depending on the resolution of your
screen. In line Caption you can name
the window. It is recommended to state
a name according to the part to be
marked. If the control box Quoted is
activated the text entered there will then
appear as string. If the control box is

switched off the value entered under
Caption becomes a variable which can
be defined independently.

The field Dialogue Function supports
complex processes, however details
about that shall not be explained here.

Any comment can be entered into line
Comment, but is only of use for the
comprehension of the programmer.

Features of the dialogue window

6.2. Function Select

The function Select serves to choose
and mark control elements.

Function Select

AC I
La se r-C o m p o ne nts

Let us look again at example 13. In this
example the size of the OK-button
should be modified. First, this button
must be chosen as active element by
clicking the function Select. When
double-clicking the corresponding
dialogue window opens enabling to edit
independently.

6.3. Function GroupBox

Button: Add GroupBox

This element serves to summarize
optically the other control elements thus
emphasizing in particular their
belonging together. This box can be
given a name consisting of a fixed text
or a variable.

 Button: View of elements

If several elements are used in one
dialogue window the buttons View of
elements serve to present the elements
more clearly visible during the
programming. If several elements are
overlapping that element will be in the
foreground during the program
processing which is first in the dialogue
programming.

The following program example will
exemplify this context:

Sub Main

Begin Dialog UserDialog 400,203,"Dialog"
OKButton 120,91,170,63

 PushButton 70,21,290,84,"Press"
GroupBox 40,14,340,175,"Einagbefenster"

 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

Program example 14

AC I
La se r-C o m p o ne nts

6.4. Function Text

This element serves to output in an
easy manner texts in the User dialogue
window enabling to visualize both fixed
and variable text contents. These texts
can be formatted (left justified, right
justified, centred).

 Button Add Text

Text input

In the upper window you will realize that
„Laser“ is directly described as string. If
the control box –Quoted- is deactivated
laser becomes a variable. In this case
the contents of this variable is shown.

Sub Main

 Laser = 5345
 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1
 OKButton 110,133,160,49
 Text 140,28,100,35,"Laser",.Text1,2
 Text 140,77,100,35,Laser,.Text2,2
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

Program example 15

6.5. Function Text Box

This function offers a very easy
possibility to input data and contents
during the execution of the program.

 Button Add Text Box

In program example 16 the ability of
this function to operate will be
described.

Definition text inputs

AC I
La se r-C o m p o ne nts

You will recognize that the basic
structure of the definition is repeating
except some slight variations in the
different functions. In case of input the
contents entered is written into a
variable agreed on under Field. In the
further program run it is possible to go
back to this variable.

Sub Main

 Begin Dialog UserDialog 380,175,"Kreis"
 OKButton 130,112,130,49
 TextBox 230,56,60,21,.Variable
 Text 70,56,160,21,"Radius bitte eingeben:",.Text1
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg
 Debug.Print Radius

 Radius = dlg.Variable

 DCS.Circle (9,0,0,Radius,0,360,False)

End Sub

Program example 16

This example combines the functions
Text output and Text input. The
program realizes a circle with a radius
of 17mm.

6.6. Function Check Box

The control box Check Box enables the
user to activate, i.e. deactivate different
options in one program run.

 Button Check Box

A CheckBox can adopt two kinds of
conditions, true or false. If the check
box is activated the condition changes
into „True“. If the check box is not
clicked on the condition „Wrong“
remains.

This function will be exemplified, too.
Aim is to develop a program enabling
the programmer to mark optionally a
circle, a rectangle, both graphic
elements or none of both.

Sub Main
 Auswahl
End Sub
 Function Auswahl

 Begin Dialog UserDialog 400,203,"Beschriftung"
 Text 100,70,90,14,"Kreis",.Text1
 Text 100,105,90,14,"Rechteck",.Text2
 Text 130,35,140,14,"Menü - Auswahl",.Text3,2
 OKButton 120,140,180,35
 CheckBox 240,70,90,14,"Marking",.CheckBox1
 CheckBox 240,105,90,14,"Marking",.CheckBox2
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

 If dlg.checkbox1 = 1 Then DCS.Circle (9,0,0,10,0,360,False)
 If dlg.checkbox2 = 1 Then DCS.Rectangle (9,0,0,10,10,False)

 End Function

AC I
La se r-C o m p o ne nts

Program example 17

6.7. Function Option Button

Like theCheckBox, the function Option
Button is a switch which only adopts the
conditions true or false. However, all
control elements for this function of one
group are independent from each other
as they are combined by an ODER
function. This means that only one
option field of a group is able to adopt
the condition true, the other elements
remain as wrong.

Button: OptionButton

The example program belonging to this
chapter corresponds to program 16,
however it is only possible to choose
alternatively a circle or a rectangle.

Sub Main
 Auswahl
End Sub
Function Auswahl

 Begin Dialog UserDialog 400,203,"Beschriftung"
 Text 130,35,140,14,"Menü - Auswahl",.Text3,2
 OKButton 120,140,180,35
 OptionGroup .Group1
 OptionButton 160,70,80,14,"Kreis",.OptionButton1
 OptionButton 160,91,100,14,"Rechteck",.OptionButton2
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

 If dlg.Group1 = 0 Then DCS.Circle (9,0,0,10,0,360,False)
 If dlg.Group1 = 1 Then DCS.Rectangle (9,0,0,10,10,False)

End Function

Program example 18

This way as many option buttons as
you like can be summarized to one
group.

6.8. Function Type 1
List Box

As already expressed in the name
itself, the list box is used to indicate
lists. If these lists contain more
elements than can be displayed, scroll
buttons are automatically inserted

AC I
La se r-C o m p o ne nts

enabling the user to scroll. However,
there is no possibility to make inputs in
this function. The definition of the
Listbox is realized by an array which
must be measured accordingly. The
selection of the user is accessible by
analysing the variable defined under
Field.

Button: ListBox

Definition of ListBox

This function will be exemplified by
marking a rectangle and a circle.

Sub Main

 Dim Mark(2)As String

 Mark(0)= "Kreis"
 Mark(1)= "Rechteck"

 Begin Dialog UserDialog 400,203,"Listbox"
 OKButton 120,126,140,49
 ListBox 150,56,90,49,Mark(),.ListBox1
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

 If dlg.ListBox1 = 0 Then DCS.Circle (9,0,0,10,0,360,False)
 If dlg.ListBox1 = 1 Then DCS.Rectangle (9,0,0,10,10,False)

End Sub

Program example 19

6.9. Function Type 2
Drop List Box

The DropListBox is a ListBox, too.
However, the user has the possiblity to
make an input during the execution of
the program or alternatively to select
between the options offered.

Button: DropListBox

The defintion of the accessible variable
is realized by an array like it is the case
for the ListBox.

Example:

Sub Main

 Dim Mark(2)As String

 Mark(0)= "Kreis"
 Mark(1)= "Rechteck"
 Begin Dialog UserDialog 400,203,"DropListBox"
 OKButton 130,119,130,56
 DropListBox 150,56,90,49,Mark(),.DropListBox1,1
 Text 140,21,140,14,"Menü - Auswahl",.Text1
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

AC I
La se r-C o m p o ne nts

 If dlg.DropListBox1 = "Kreis" Then DCS.Circle
(9,0,0,10,0,360, False)
 If dlg.DropListBox1 = "Rechteck" Then
DCS.Rectangle (9,0,0,10,10,False)

End Sub

Program example 20

6.10. Function Type 3
Combo Box

Regarding its function the ComboBox
corresponds completey to the
DropListBox, however the Combobox
differs from the ListBox in its
presentation. The Combobox keeps the
selection window permanently opened
and if necessary it can be scrolled in
this window. However, the selection
window of the DropListbox is not
opened before it is activated.

Button: ComboBox

6.11. Function Picture

The function Picture is used for
designing backgrounds or for inserting
company logos into the window. With
the help of this function it is possible to
include Bitmap files into the window.

Button: Picture

In the following example, a standard
Windows bitmap will be used as
background of the window. For that
purpose the complete directory of the
file is indicated under Caption.

Definition of Bitmap file

Sub Main

 Begin Dialog UserDialog 400,203,"Picture"
 Picture
0,0,400,203,"c:\windows\Ägypten.bmp",0,.Picture1
 OKButton 120,112,160,56
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

AC I
La se r-C o m p o ne nts

Program example 21

6.12. Buttons

A button is continously required to
confirm inputs effected or to start a
process (marking). Under MagicMark-
Visual Basic three different types of
buttons are available, at least one of
them must be there:

• OK Button
• Cancel Button
• Push Button

Sub Main

 Begin Dialog UserDialog 260,126,"Button"
 Text 60,28,140,28,"Please push a button"
 OKButton 10,91,60,21
 PushButton 100,91,60,21,"&Run"
 CancelButton 190,91,60,21
 End Dialog
 Dim dlg As UserDialog

 Debug.Print Dialog(dlg)

End Sub

Program example 22

The variable Dialogue(dlg) supplies
according to the kind of using the
button with the following results
accessible in the further program run:

OK OK-Button: -1
Run Push-Button: 1
Cancel Cancel-Button: 0

AC I
La se r-C o m p o ne nts

7. Special functions

7.1. Date / time

The request to pursue the product’s way
from it’s starting on makes it more and
more necessary for automated markings
to record the manufacturing date, i.e.
time. The functions of MagicMark-Visual
Basic described in the following chapter
enable a lot of various kinds of marking
date and time.

Date, Time, Now

The functions Date, Time and Now are
used to determine the present times:

Sub Main

 DCS.TextTTF (9,-5,10,Date,Arial,2,2,2,False,3,False)
 DCS.TextTTF (9,-5,0,Time,Arial,2,2,2,False,3,False)
 DCS.TextTTF (9,-5,-10,Now,Arial,2,2,2,False,3,False)

 Debug.Print Date
 Debug.Print Time
 Debug.Print Now

End Sub

07.04.00
08:31:31
07.04.00 08:31:31

Program example 23

Program example 23 shows the results
supplied by the functions used.

Hour, Minute, Second

Indicating the current hour, minute and
second can be realized with the help of
this function.

Sub Main

 Debug.Print Time

 DCS.TextTTF (9,-5,10,Hour(Time),Arial,5,2,2,False,3,False)
 DCS.TextTTF (9,-5,0,Minute(Time),Arial,5,2,2,False,3,False)
 DCS.TextTTF (9,-5,-10,Second(Time),Arial,5,2,2,False,3,False)

 Debug.Print Hour(Time)
 Debug.Print Minute(Time)
 Debug.Print Second(Time)

End Sub

09:27:44
9
27
44

Program example 24

Timer

This function determines the seconds run
out since midnight. This is a real number,
i.e. the time is determined with a precision
of two decimal places.

Sub Main

 Debug.Print Timer

 DCS.TextTTF (9,-5,0,Timer,Arial,3,2,2,False,3,False)

End Sub

34566,86

Program example 25

Day, Month, Year

The functions to determine Day, Month
and Year are analog to the functions
Hour, Minute and Second.

Sub Main

AC I
La se r-C o m p o ne nts

 Debug.Print Date

 Debug.Print Day(Date)
 Debug.Print Month(Date)
 Debug.Print Year(Date)

End Sub

07.04.00
7
4
2000

Program example 26

MonthName, WeekDay, WeekDayName

Marking the name of the month, the
number of the workday, i.e. the name of
the workday is often used in the industrial
marking process. The functions described
in the following enable to realize these
kinds of marking.

Sub Main

 Debug.Print MonthName (Month(Date))
 Debug.Print Weekday (Now)
 Debug.Print WeekdayName (Weekday(Now))

End Sub

April
6
Freitag

Program example 27

However, for the function Weekday the
following agreement has to be applied:

(1) - Sonntag
(2) - Montag
(3) - Dienstag
(4) - Mittwoch
(5) - Donnerstag
(6) - Freitag
(7) - Samstag

For a detailled description of these
functions and their syntax please refer to
the Online-help.

 7.2. Manipulation and
handling of texts

A selection of functions important for
handling and manipulating texts are
explained below. The functions described
represent only a part of the complete
extent of functions. Further functions, their
syntax und functioning are available in the
Online-help.

Len

Syntax: Len (String$)

Description: determines length of
String$

Example: Sub Main
 Debug.Print Len("Laser")
 Wert = Len("Laser")* 2
 Debug.Print Wert
End Sub

5
10

Program example 28

Left

Syntax: Left$ (String$,Len)

Description: creates string with length
Len, starting on the left at
string

Example: Sub Main
 Debug.Print Left$("Laser",2)
End Sub

La

Program example 29

AC I
La se r-C o m p o ne nts

Mid

Syntax: Mid$ (String$,Index,[Len])

Description: creates string with length
Len, starting at position
Index.

Example: Sub Main
 Debug.Print Mid$("Laser",3,2)
End Sub

se

Program example 30

Right

Syntax: Right$ (String$,Len)

Description: creates string with length
Len, starting on the right
at string.

Example: Sub Main
 Debug.Print Right$("Laser",2)
End Sub

er

Program example 31

Str

Syntax: Str$ (Num)

Description: creates string out of
numerical variable

Example: Sub Main
 Debug.Print Str$(-5*8)
End Sub

-40

Program example 32

StrReverse

Syntax: StrReverse$ (String)

Description: creates string in reversed
order of starting string.

Example: Sub Main
 Debug.Print StrReverse$ (“Laser“)
End Sub

resaL

Program example 33

UCase

Syntax: UCase$ (String)

Description: creates string turning all
small letters into capital
letters.

Example: Sub Main
 Debug.Print UCase$ (“Laser“)
End Sub

LASER

Program example 34

AC I
La se r-C o m p o ne nts

7.3. Mathematical Operations

A series of mathematical functions can be
used for calculations within the execution
of the program.

Sin, Cos, Tan, Atn

These functions supply the
trigonometrical functions of numerical
values.

Syntax: Sin (Num)
Cos (Num)
Tan (Num)
Atn (Num)

Example: Sub Main
 Debug.Print Sin(1)
 Debug.Print Cos(1)
 Debug.Print Tan(1)
 Debug.Print Atn(1)
End Sub

0,841470984807897
0,54030230586814
1,5574077246549
0,785398163397448

Program example 35

Exp, Log

These functions enable to calculate the
exponential, i.e. the logarithm function.

Syntax: Exp (Num)
Log (Num)

Example: Sub Main
 Debug.Print Exp(1)
 Debug.Print Log(1)
End Sub

2,71828182845905
0

Program example 36

Sqr

This function supplies the square root of
numerical values.

Syntax: Sqr (Num)

Example: Sub Main
 Debug.Print Sqr(81)
End Sub

9

Program example 37

Abs, Fix, Int, Round, Sgn

Syntax: Abs (Num)
Fix (Num)
Int (Num)
Round (Num,[Stellen])
Sgn (Num)

Description: Abs: forms the absolute
value
Fix: forms an integer
variable cutting off
decimal places
Int: forms an integer
variable carrying out a
curve
Round: Rounds a
numerical value to the
number of decimal places
given
Sgn: Returns a preceding
sign value.

AC I
La se r-C o m p o ne nts

Example: Sub Main
 Debug.Print Abs(-100)
 Debug.Print Fix(-100.2)
 Debug.Print Int(-100.8)
 Debug.Print Round(-100.88,1)
End Sub

100
-100
-101
-100,9

Program example 38

7.4. Operators

n ! numerical value
s ! string

- n1 preceding sign changing from
 n1.

n1 ^ n2 takes n1 as exponential
(n2-times)

n1 * n2 multiplies n1 by n2.

n1 / n2 divides n1 by n2.

n1 \ n2 divides integer value of n1 by
the integer value of n2.

n1 + n2 adds n1 and n2.

s1 + s2 connects s1 with s2.

n1 - n2 subtracts n2 from n1.

n1 & n2 connects n1 with n2.

n1 < n2 returns True, if n1 smaller
than n2.

n1 <= n2 returns True, if n1 smaller or
equal n2.

n1 > n2 returns True, if n1 bigger than
n2.

n1 >= n2 returns True, if n1 bigger or
equal n2.

n1 = n2 returns True, if n1 equal n2.

n1 <> n2 returns True, if n1 not equal
n2.

s1 = s2 returns True, if s1 equal s2.

s1 <> s2 returns True, if s1 not equal
s2.

n1 And n2 Bit-wise AND link of n1 with
n2.

n1 Or n2 Bit-wise OR link of n1 with n2.

Sub Main
 N1 = 10
 N2 = 3
 S1$ = "asdfg"
 S2$ = "hjkl"
 Debug.Print -N1 '-10
 Debug.Print N1 ^ N2 ' 1000
 Debug.Print Not N1 '-11
 Debug.Print N1 * N2 ' 30
 Debug.Print N1 / N2 ' 3.3333333333333
 Debug.Print N1 \ N2 ' 3
 Debug.Print N1 + N2 ' 13
 Debug.Print S1$ + S2$ '"asdfghjkl"
 Debug.Print N1 - N2 ' 7
 Debug.Print N1 & N2 '"103"
 Debug.Print N1 < N2 'False
 Debug.Print N1 <= N2 'False
 Debug.Print N1 > N2 'True
 Debug.Print N1 >= N2 'True
 Debug.Print N1 = N2 'False
 Debug.Print N1<>N2 'True
 Debug.Print S1$ = S2$ 'False
 Debug.Print S1$ <> S2$ 'True
 Debug.Print N1 And N2 ' 2
 Debug.Print N1 Or N2 ' 11
End Sub

Program example 39

AC I
La se r-C o m p o ne nts

7.5. Handling files

A file is a structured quantity of data
which can for example be saved on the
hard disk of your PC. To be able to have
access to data records of a file this must
be opened. Then, it is possible to have
access to the file for making inputs and/or
outputs.

This function enables to keep a record in
files of marking processes, i.e. to use data
from files for the laser marking without
having to enter them manually.

MagicMark-Visual Basic is executing input
and output processes by the help of data
numbers. This number is assigned to a
file or unit when it is opened by the
command OPEN.

The physical file is described by its file
description being a string in form of:

[Unit:] [directory] file name

The name of the unit determines which
input/output unit is used. The track is
informing MagicMark about the directory
comprising the file requested. The file
name determines which file must be
searched on a certain unit.

Note: The file specification for data
communication units differs from
this (please refer to chapter 12.2.
– Serial communication)

Sequential files

Sequential files can be created in a very
easy way. Data entered into a sequential
file are saved sequentially in the order of
the handing over of the several data.
When reading such a file this file must be
worked off from the beginning on. This is
an important disadvantage of sequential
files.

The command OPEN opens, i.e. creates
the file

Syntax: Open Dateiangabe For Modus
As # Dateinummer [Len =
Satzlänge]

Modes: Output – output
Append - extension
Input - read

Example:

Open c:\Temp\Mark.txt For Output As #1

After having opened such a file data
records can be filed by the command
PRINT.Please note that control
characters are inserted between the
various elements. If this is not done a line
forms a complete string.

Example:

Print #1,"A=";“,“;A

By means of this command String A= as
well as the variable A is taken out into file
Mark.txt.

AC I
La se r-C o m p o ne nts

Then, the file must be closed again duly.

Close #1

Sub Main

 A%=5

 Open "c:\temp\Mark.txt" For Output As #1
 Print #1,"A=";",";A%
 Close #1

 End Sub

Program example 40

If a further data record should be coupled
to a consisting file this is made by the
help of the function APPEND.

Sub Main

 B%=10
 Open "c:\temp\Mark.txt" For Append As #1
 Print #1,"B=";“,“;B%
 Close #1

 End Sub

Now, the file Mark.txt is consisting of two
lines with two elements each.

Program example 41

The following example makes clear how
this data can be read out of the file and
then for example used for the marking.

Doing this is possible by means of the
commands Input and Line Input. Input
enables to read out the elements of each
line, whereas Line Input reads out the
complete line as string.

Sub Main

 Dim Text$
 Dim Wert%
 Dim Zeile$
 Open "c:\temp\Mark.txt" For Input As #1
 While Not EOF(1)
 Input #1,Text$,Wert
 Line Input #1,Zeile$
 Debug.Print Text$;Wert%
 Debug.Print Zeile$
 Wend
 Close #1

End Sub

A= 5
B=, 10

Program example 42

AC I
La se r-C o m p o ne nts

Files with direct access

Directly accessible files allow to have
access to selected data records. This is
realized by the help of a data record
number.

Sub Main
 Dim V As Variant
 V="Text"
 Open "C:\temp\Beispiel.txt" For Random As #1 Len =15
 Put #1,1, V
 Close #1
End Sub

Program example 43a

Sub Main
 Dim V As Variant
 Open "c:\temp\Beispiel.txt" For Random As #1 Len=15
 Get #1,1, V
 Debug.Print V
 Close #1
End Sub

Text

Program example 43b

In example 43a, a file with direct access is
created. The length of a string is max. 15
characters. A data record is entered into
the file by using the command Put.

Put StreamNum, [RecordNum], var

By the help of the command Get (program
example 43b) the data saved like this can
be read out again.

Get StreamNum, [RecordNum], var

The record number is describing the
position within the file.

7.6. Input Box

The Input box offers, additionally to the
User-Dialogue-Editor, a simplified
possibility to enter data.

Syntax:

InputBox[$](Prompt$[, Title$][, Default$][,
XPos, YPos])

Prompt$: Dialogue appearing in the input
window and asking the user to
act.

Title$: Title of the Input Box

Default$: Here, the user can be given
special instructions

Xpos: X-position, at which the Input
Box becomes visible on
monitor.

Ypos: Y-position at which the Input
Box becomes visible on
monitor.

Program example 44 shows the
functioning of the Input Box.

Sub Main
 L$ = InputBox("Bitte Namen eingeben:" ,"Eingabefenster"

,"Michael Müller")
 Debug.Print L$
 DCS.TextTTF(9,0,0,L$,Arial,5,1,2,0,3)
End Sub

Program example 44

AC I
La se r-C o m p o ne nts

7.7. Message Box

The Message Box is the counterpart to
the Input Box. This box enables in a
simple way how to present data and
variables on screen.

Syntax:

MsgBox(Message$[, Type][, Title$])

Message$: This string is shown on screen
as information for the user

Type: The type contains the buttons
shown

Button Value Effect

vbOkOnly 0 OK

vbOkCancel 1 OK and cancel

vbAbortRetryIgnore 2 Abort, retry, ignore

vbYesNoCancel 3 Yes, no, cancel buttons

vbYesNo 4 Yes, no

vbRetryCancel 5 Retry, cancel

Icon Value Effect

0 No Symbol

vbCritical 16 Stop Symbol

vbQuestion 32 Question Symbol

vbExclamation 48 Attention Symbol

vbInformation 64 Information Symbol

Title$: This string describes the
title of the Message Box.

The program examples 45 examplify
different applications of the Message Box.

Sub Main
 'Buttons
 MsgBox("Programmbeispiel 45",0,"Test")
 MsgBox("Programmbeispiel 45",1,"Test")
 MsgBox("Programmbeispiel 45",2,"Test")
 MsgBox("Programmbeispiel 45",3,"Test")
 MsgBox("Programmbeispiel 45",4,"Test")
 MsgBox("Programmbeispiel 45",5,"Test")
 'Icons
 MsgBox("Programmbeispiel 45",16,"Test")
 MsgBox("Programmbeispiel 45",32,"Test")
 MsgBox("Programmbeispiel 45",48,"Test")
 MsgBox("Programmbeispiel 45",64,"Test")
End Sub

Program example 45a

In the first part of the program the
Message Boxes supply with different
buttons. The selection made by the user
can be queried.

Sub Main
 If MsgBox("Programmbeispiel 45",4,"Abfrage")= vbYes
Then
 MsgBox("Es wurde Ja gedrückt!",16,"Information")
 Else
 MsgBox("Es wurde Nein gedrückt!",32,"Information")
 End If
End Sub

 Program example 45b

AC I
La se r-C o m p o ne nts

7.8. Pop Up Menu

The function PopUpMenu enables to
create a menu by which different actions
can be realized.

Syntax: ShowPopupMenü (StrArray$()
[, PopupStyle][, XPos, YPos])

In StrArray$ all possibilities of selecting
are fixed in an one-dimensional field. The
PopupStyle describes the direction of the
menu in connection with the X and Y
coordinate. The following values are
allowed for the PopupStyle:

PopupStyle Value Effect

vbPopupLeftTopAlign 0 Basic setting

vbPopupUseLeftButton 1 Selection only possible with
left-click

vbPopupUseRightButton 2 Selection possible with left
or right click

vbPopupRightAlign 4 Menu is in the right corner
of the x-position

vbPopupCenterAlign 8 Menu is centred around the
x-position

vbPopupVCenterAlign 16 Menu is centred around the
y-position

vbPopupBottomAlign 32 Menu button is at the y-
position

Program example 46 shows how using
this function

Sub Main
 Dim Items(0 To 2) As String
 Items(0) = "Kreis &K"
 Items(1) = "Rechteck &R"
 Items(2) = "Vector &V"

 Auswahl = ShowPopupMenü (Items)

 If Auswahl = 0 Then Kreis ' Popup Menü mit Auswahl
Kreis

 If Auswahl = 1 Then Rechteck ' Popup Menü mit
Auswahl Rechteck
 If Auswahl = 2 Then Vector ' Popup Menü mit Auswahl
Vector
 End Sub
Function Kreis
 DCS.Circle(9,0,0,10,0,360,False)
End Function
Function Rechteck
 DCS.Rectangle(9,0,0,10,10,False)
End Function
Function Vector
 DCS.Vector(0,0,20,20)
End Function

Program example 46

7.9. Function Dialogue

The function Dialogue in the User
dialogue menu can among others be used
to keep a dialogue window permanently
opened during the execution of a
program. The following example explains
how this is working.

Sub Main
 Begin Dialog UserDialog 370,140,"Dialog",.DialogFuncStatus
 OKButton 220,42,90,42
 PushButton 70,28,110,35,"TestStart",.TestStart
 PushButton 70,63,110,35,"TestStop",.TestStop

 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

Function DialogFuncStatus%(DlgItem$, Action%, SuppValue%)
 Static TestRun As Boolean

 Select Case Action%
 Case 1

 Case 2

 If DlgItem$ = "TestStart" Then
 TestRun = True
 DialogFuncStatus% = True
 End If
 If DlgItem$ = "TestStop" Then
 TestRun = False
 DialogFuncStatus% = True
 End If

AC I
La se r-C o m p o ne nts

 Case 3

 Case 4

 Case 5

 If TestRun = True Then
 DOIT
 End If
 DialogFuncStatus% = True
 End Select
End Function
Sub DOIT
 DCS.Speed(200)
 DCS.Circle(9,0,0,5,0,360,False)
End Sub

When calling the User Dialogue the
function DialogFuncStatus will be worked
off. A Select-Case-Branch is analysing
the actions of the user.

Program example 47

The routine DOIT is repeated until it is
stopped by the user, i.e. the program is
finished by the OK-button.

AC I
La se r-C o m p o ne nts

8. Laser and scanning control system

The control instructions described in
this chapter serve for the direct laser
and scanning control system. This
commands can be divided into four
sections:

• Marking paramters
• Control system
• marking
• supervision

8.1. Marking parameters

Marking parameters are such
characteristics which define the marginal
conditions for the marking jobs. These
are among others the power, frequency
and the spot velocity.

This again can be divided into two
groups. The first group is directly
affecting the reaction of the material,
whereas the second group is influencing
the geometry of the marking image.

Material settings

Among these parameters are:

- power
- frequency
- speed

For setting these parameters the
following commands are used:

♦ Setting of laser power:

DCS.Power(Power)
Sets laser power in per cent
Type of variable: long

♦ Setting of laser power with delay:

DCS.PowerWait(Power,Wait_ms)
Sets laser power in per cent and waits
for delay time
Type of variable: long

♦ Setting of frequency:

DCS.QSF(Frequenz)
Sets Q-switch frequency in Hz
Type of variable: long

♦ Setting of pulse width:

DCS.QSF_PW(QSF_PW)
Sets pulse width in µs
Type of variable: long

By the help of the below mentioned
functions

DCS.GetPower()
DCS.GetQSF()
DCS.GetSpeed()
DCS.GetQSF_PW()

it is possible to read out these laser
parameters again. The return value is
one of the type of variables long.

The program example 48 shows how
using these commands.

AC I
La se r-C o m p o ne nts

Sub Main
 LaserParameter(PWR,QSF,SPEED)

 DCS.Power(PWR) 'Setzen der
Laserparameter

 DCS.QSF(QSF)
 DCS.Speed(SPEED)

 Leistung = DCS.GetPower() ' Auslesen der Parameter
 Frequenz = DCS.GetQSF()
 Geschwindigkeit = DCS.GetSpeed()

 Debug.Print Leistung;Frequenz;Geschwindigkeit

End Sub
Function LaserParameter(PWR,QSF,SPEED)
Begin Dialog UserDialog 400,203,"Laserparameter“

Text 30,35,140,21,"Power in %",.Text1
 Text 30,77,140,21,"Frequenz in Hz",.Text2
 Text 30,119,140,21,"Speed in mm/sec",.Text3
 OKButton 120,161,190,28
 TextBox 220,35,110,21,.Power
 TextBox 220,77,110,21,.Frequenz
 TextBox 220,119,110,21,.Geschwindigkeit
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

 PWR=dlg.Power
 QSF=dlg.Frequenz
 Speed=dlg.Geschwindigkeit

End Function

Program example 48

Setting the pulse width is very important.
Standard setting for this is 6µsec. This
value results from considering the

maximum Q-switch frequency of 75KHz.
This frequency corresponds to a cycle
duration of 13,33µsec. The proportion of
the pulse signal for controlling the Q-
switch should not be smaller than 1:1.
Therefore, 7,33µsec is the loading time
for the laser crystal, the rest is for the
emission of the pulse. As the length of
the actual laser pulse is in the range of
20.80 nsec. a shortening of the pulse
width is possible. Changing the pulse
width is very important for marking by
tempering. Thus, after the emission of
the laser pulse it is possible to aftertreat
the penetration point some µsec. long by
cw-irradiation.

8.2. Control system

Switching on/ switching off routines of
the laser described in chapter 4 can just
as direct be initialized with commands.
This way states of the laser can
automatically be changed during the
execution of programs.

Thus, the shutter for example can be
opened and closed during a program
run, or the laser can be moved into the
StandBy mode.

Additionally, an automatic marking is
made possible for the use within
automatic production lines by the help of
a digital in-/output.

♦ Shutter:

DCS.LaserShutter(State)
Opens/closes shutter
States:
True=open / False=closed
Type of variable: bool

AC I
La se r-C o m p o ne nts

♦ Pilot-Laser:

DCS.LaserPilot(State)
Activates/deactivates pilot laser
States: True=on / False=off
Type of variable: bool

♦ Start of marking:

DCS.Input(0)
Reads input no. 0
States:
True=high (24V)
False=low (0V)
Type of variable: bool

♦ End of marking:

DCS.Output(0,State)
Sets output no. 0 to
high (24V-State=True)
low (0V-State=False)
Type of variable: void

Sub Main
 DCS.LaserON()
 DCS.LaserPilot(True)
 DCS.LaserShutter(True)

 DCS.Circle(9,0,0,3,0,360,False)

 DCS.LaserShutter(False)
 DCS.LaserStandBy()
End Sub

Program example 49

The program 49 activates the laser,
switches on the pilot laser, opens the
shutter. Then, the laser draws a circle by
means of the parameters last used.
After that, the laser is moved into state
StandBy.

8.3. Marking

The commands mentioned below serve
for the direct scanning control system,
i.e. the actual flow deviation. Thus, using
a series of commands enables to
process easy graphic basic elements,
texts, barcodes as well as vector
graphics.

Rotation

Each graphic element treated in the
following can be rotated in a certain
angle around a defined point.

DCS. Rotation(A,B,C)

A – rotation coordinate X [mm]
B – rotation coordinate Y [mm]
C – rotating angle [°]

Vector

This function enables to draw a line
from coordinate A to coordinate B.

DCS. Vector(A,B,C,D)

A – starting coordinate X [mm]
B – starting coordinate Y [mm]
C – ending coordinate X [mm]
D – ending coordinate Y [mm]

Sub Main
 For i = 0 To 350 Step 10
 DCS.Rotation(0,0,i)
 DCS.Vector(8,8,10,10)
 Next i
End Sub

Program example 50

Example 50 shows an easy example
for marking a scale in a range of 10°

AC I
La se r-C o m p o ne nts

steps. For this, a loop is passed with a
step of 10 (rotating angle).

Position

This command guides the
galvanometer mirrors to the defined
coordinate X,Y.

DCS. Pos(A,B)

A – position X [mm]
B – position Y [mm]

Rectangle

This function enables to draw a
rectancle. Three variations are
possible:

- Simple rectangle
- Filled rectangle
- Rectangle with rounded corners

DCS.Rectangle(A,B,C,D,E,G)
DCS.Rectangle_Filled(A,B,C,D,E,G)
DCS.Rectangle_Rounded(A,B,C,D,E,F,G)

A – basic reference point
B – basic coordinate X [mm]
C – basic coordinate Y [mm]
D – width [mm]
E – height [mm]
F – radius [mm]
G – filling [True-filled / False-not filled)
The parameter basic reference point
allows the alignment of the rectangle
into X and Y direction.

For this, the following convention is
valid:

BaseRef X Y
1 Left-justified Lower edge aligned
2 Left-justified Centred
3 Left-justified Upper edge aligned
4 Centred Upper edge aligned
5 Right-justified Upper edge aligned
6 Right-justified Centred
7 Right-justified Lower edge aligned
8 Centred Upper edge aligned
9 Centred Centred

Alignment by basic reference point

Basic reference point

Circle

This function enables to draw a circle.

DCS.Circle(A,B,C,D,E,F,G)

A – basic reference point
B – central point X [mm]
C – central point Y [mm]
D – radius [mm]
E – starting angle [°]
F – ending angle [°]
G – filling [True-filled / False- not filled)

X

Y

1

2 9 6

78

543

AC I
La se r-C o m p o ne nts

Sub Main
 DCS.Rectangle(9,0,0,10,10,False)
 DCS.Rectangle_Filled(9,0,0,10,10,False)
 DCS.Rectangle_Rounded(9,0,0,10,10,3,False)
 DCS.Circle(9,0,0,5,0,360,False)
End Sub

Program example 51

Texts

By the help of this function any texts can
be created. This text can be influenced
in form and design by a multitude of
parameters.

DCS.TextTTF(A,B,C,D,E,F,G,H,I,J,K)

A – basic reference point
B – basic coordinate X [mm]
C – basic coordinate Y [mm]
D – text contents as string or variable
E – font name
F – height of text [mm]
G – distance between characters
H – font width [400-800]
I – normal [0] / in italics [1]
J – quality [0-low / 1-medium / 2-high]
K – filling [True-filled / False-not filled)

Parameter D defines the contents of the
text to be marked. If that text is written in
inverted commas this string is actually
marked. The position is fixed analog to
the graphic elements treated so far by
the parameters A, B and C. Should a
variable be marked instead of a string
the name of the variable is given in
parameter D. However, make sure that
the variable is declared. The height of
the font is stated in parameter F and the
distance between characters can be
changed in parameter G.

 It is valid:

0.5 distance reduced by factor 2
1 normal distance
2 distance increased by factor 2

Naturally, any other values are
admissible.

The font width is fixed in parameter H. It
is valid:

400 normal font
800 fat font

Any other valence is allowed. However,
please note that certain font types do
not admit any fat font.

Parameter I determines, whether the
font is marked in normal printing style or
in italics.

0 normal printing style
1 in italics

Each character of a TrueType Font
consists of a finite number of vectors. As
higher this number is, as cleaner the
font will be marked. If the number of
vectors is reduced the font will become
more and more „cornered“, in exchange
the scanning speed clearly increases.
Therefore, according to application this
parameter must be set correspondingly.

0 bad quality
high scanning speed

1 average quality
average scanning speed

2 high quality
slow scanning speed

AC I
La se r-C o m p o ne nts

 low resolution high resolution

Sub Main
 Dim Hello As Single
 Hello = 110

 DCS.TextTTF(9,0,0,"Hello",“Arial“,10,1,400,False,1,False)
 DCS.TextTTF(9,0,10,Hello!,“Arial“,10,1,400,False,1,false)
End Sub

Program example 52

Vector graphics (HPGL)

Complex graphics, as for example
expensive type plates, are created in a
graphic program by using the HPGL-
interface. That means, that every
graphic program disposing of an export
filter according to HPGL is in a position
to create graphics which can be marked
by the help of MagicMark, as for
example Corel Draw.

To integrate HPGL files into MagicMark
the following command is used:

DCS.ImportHPGL(A,B,C,D,E)

A – basic reference point
B – basic coordinate X [mm]
C – basic coordinate Y [mm]
D – HPGL file
E – pen
The functioning of the commands
mentioned above will be exemplified in
the following example. For this, a file
has been created in a graphic program,
for example Corel Draw, named
Logo,plt. The extension *.plt points out
that this is a HPGL file.

 Logo.plt

Sub Main
 DCS.ImportHPGL(9,0,0,“C:\Logo.plt“,255)
End Sub

Program example 53

Parameter E, the pen number, is very
important. By assigning a pen to a
certain level in the graphic program only
selected levels for example can be
marked. This enables the user to
change the laser parameters from level
to level. If you think for example of
creating labels by means of laser
radiation the whole label can be created
in one file, but text and frame to be cut
out are on different levels. Thus,
different laser parameters can be
assigned to these levels. If the
parameter E is set to value 255, all
levels are marked.

Barcode

MagicMark offers the possibility to mark
all current types of barcodes. Like it is
done for the other marking functions the
barcode to be marked is defined by
parameters.

DCS.Barcode(A,B,C,D,E,F,G,H,I,J)

A – type of barcode
B – width of module
C – data
D – data appendix
E – basic reference point
F – basic coordinate X [mm]
G – basic coordinate Y [mm
H – height barcode 1 (MainHigh)

AC I
La se r-C o m p o ne nts

I – height barcode 2 (AddOnHigh)
J – height barcode 3 (LongHigh)
K – Inversion [0-normal / 1-inverted]

A – type of barcode

The types of barcodes available are
listed in the appendix of this manual.

B – Width of module

The width of the module determines the
relation between bar and gap in the
barcode. Standard value for this is 1.
Increasing the value effects that the
ratio is moving to bigger gaps. When
reducing the value the bars move
respectively closer together.

C – Data

This parameter contains the data to be
transformed into a barcode. For that, it
is important to observe respectively
appendix B, particularly when selecting
the characters and the number of
places to be coded. When using strings
please note that these must be put in
inverted commas, otherwise the string
supposed will be interpreted as
variable.

D – Data - appendix

For barcodes with an appendix (bar-
code nos. 21-28) the data for the
appendix are filed in this parameter.
Further details are according point C –
data.

E,F,G – positioning

According to the commands treated so
far the positioning here is also effected
analog.

H, I, J – height barcode

The following three parameters H, I, J
define the height of the barcode. The
convention as mentioned below is valid:

Heights of barcodes

For simple barcodes (Nos. 1-16) only the
indication of the parameter H (MainHigh)
is decisive, LongHigh and AddOnHigh
get 0 assigned as value.

K – inversion

Parameter K serves for marking
barcodes both on light and dark materials
by indicating, whether the barcode has to
be marked normally or inverted. It is
valid:

• Marking of light materials with dark
reaction: K=0

• Marking of dark materials with light
reaction: K=1

Program example 54 exemplifies the use
of this function.

J H

I

AC I
La se r-C o m p o ne nts

Sub Main
 DCS.Barcode(16,0.5,1234,0,9,0,-15,5,0,0,0) ' Code
128C
 DCS.Barcode(21,0.5,1234567,12,9,0,0,5,3,7,0) ' EAN-8+2
 DCS.Barcode(11,0.5,"Hello","",9,0,15,5,0,0,0) ' EAN-
128B
End Sub

Program example 54

After having marked a barcode, one
should check regularly if this is readable.

Data Matrix Code (ECC 200)

The DataMatrix Code is a two-
dimensional code by the help of which a
multitude of information can be
accommodated in a very confined space.
The Data Matrix Code the most common
today is the ECC 200.

Example: Data Matrix Code

For calling the Data Matrix function the
following command is used:
DCS.DataMatrix(A,B,C,D,E,F,G,H,I,J)

A – module width
B – data
C – lines
D – columns
E – Data Matrix type
F – stil
G – format
H – border
I – basic reference point
J – basic coordinate X [mm]
K – basic coordinate Y [mm

A- Module width

The module width determines the
proportion of dimensions in the Data

Matrix Code. Basic value for the module
width is value 1. This means that each
square of the code is 1mm x 1mm. Thus,
a code with 12x12 pixels has an
extension of 12mm x 12mm. The
resolution of the laser beam is naturally
many times higher. The module width
can be reduced accordingly in
dependance of the material to be marked
and the features of the scanner.

B- data

The code ECC 200 can process both
alpha-numerical data and strings. If a
string is processed this has to be put in
inverted commas.

C,D- lines, columns

The number of squares in vertical and
horizontal direction are defined in the
parameters C and D. For the Data Matrix
Code is valid:
Symbol forms: max. 24 x square

max. 6 x rectangular
Thus results a min./max. size of symbol:

Min./Max: 10x10...144x144 (lines)
 8x18 ...16x48 (lines)

Please note also that only even-
numbered stagings are allowed.

Example: 14 x 14
38 x 38
8 x 18

Most important is value 0 for the
parameters C and D. If these parameters
are set to 0, then automatically the least
possible number of cells is used.

AC I
La se r-C o m p o ne nts

E- Data Matrix type

The ECC 200 Code, as already
mentioned, is the form of the Data Matrix
Code the most frequently used. To
complete the picture, further possible
types able to be defined by parameter E
are stated below.

Data Matrix Code
Code Parameter E

ECC 000 0
ECC 010 1
ECC 040 2
ECC 150 3
ECC 060 4
ECC 070 5
ECC 080 6
ECC090 7
ECC 100 8
ECC 110 9
ECC 120 10
ECC 130 11
ECC 140 12
ECC 200 26

F- Style

The function Style enables to give a
mirrored view of the code.

0: normal
1: mirrored

G- format

Parameter G defines the format of the
code, but is only effective for the codes
ECC 000 up to ECC 140. When using
the standard code ECC 200 this
parameter has no influence on the result.

Parameter G can assume values from 1
to 6:

1: for numerical data

2: capital letters
3: capital letter, numbers

and punctuation (“.“ ; “,“)
4: capital letters and numbers
5: for the first 128 ASCII - characters
6: 8 Bit / user-defined

H- boarder

This parameter defines the width of the
boarder.

0: Standard

Sub Main
 DCS.DataMatrix(1,"ACI",0,0,26,0,0,0,9,0,0) 'ECC200
End Sub

Program example 55

Filling routine

For filling texts a filling routine can be
used. It is possible to influence both the
filling algorithm (cross hatching / parallel
line / contour filling) and the distance
between lines.

DCS.Fill(A,B,C,D,E)

A – filling mode
B – distance between lines
C – angle
D – 2nd distance between lines
E – 2nd angel

A – filling mode

Optionally, the following modes are
available:

0 – no filling
1 – parallel with a line
2 – parallel with two lines
3 – contour filling

AC I
La se r-C o m p o ne nts

5 – like 1, but without outline
6 – like 2, but without outline

B – distance between lines

The distance between the filling lines is
directly stated in millimetres and is
refering to the filling with only one line
(for example filling mode A1)

C – angle

Parameter C defines the angle of the first
filling line.

D – 2nd distance between lines

This is defined analog to parameter B,
however for the 2nd filling line

E – 2nd angle

This is defined analog to parameter C,
however for the 2nd filling line

The parameters D and E are not relevant
for the filling modes 1 and 5. In this
cases the parameters D and E should be
set to 0.

For the filling mode 3 only the distance
between lines is relevant.

A filling routine set remains active as
long as another filling command is
activated.

AC I
La se r-C o m p o ne nts

9. Communication

9.1. Start marking and end
marking

According to chapter 10.2. the following
routines can be used for the start/end
commands:

♦ Start marking:

DCS.Input(0)
Reads output no. 0
States:
True=high (24V)
False=low (0V)
Type of variable: bool

♦ End marking:

DCS.Output(0,State)
Sets output to no. 0
High (24V-State=True)
Low (0V-State=False)
Type of variable: void

For more detailled information about the
hardware-technical connection of the laser to
an automatic production line please refer to
your operating manual.

The following example program serves for
exemplifying the above mentioned
commands:

Sub Main
 Begin Dialog UserDialog 370,140,"Dialog",.DialogFuncStatus
 PushButton 30,42,140,42,"JobStart",.JobStart
 PushButton
200,42,140,42,"Programmabbruch",.Programmabbruch
 End Dialog
 Dim dlg As UserDialog

 Dialog dlg
End Sub
Function DialogFuncStatus%(DlgItem$, Action%, SuppValue%)
 Static TestRun As Boolean

 Select Case Action%
 Case 1

 Case 2

 If DlgItem$ = "JobStart" Then
 TestRun = True
 DialogFuncStatus% = True
 End If

 Case 3

 Case 4

 Case 5

 If TestRun = True Then
 DOIT
 End If
 DialogFuncStatus% = True
 End Select
End Function
Sub DOIT
 DCS.Speed(20000)
 DCS.Output(0,False)
 Do
 Start=DCS.Input(0)
 Loop Until Start = True
 DCS.Circle(9,0,0,5,0,360,False)
DCS.TestMarkingComplete(True)
 DCS.Output(0,True)
End Sub

Program example 56

After having used the JobStart button the
program remains in a loop which is only left
under the condition:

-signal start marking set -

The output end marking serves for
indicating that the marking process is
finished.

AC I
La se r-C o m p o ne nts

10. Error treatment

When executing the program it may be
that errors occur regularly. Therefore,
make sure when developing programs
that the programs tolerate possible
errors. Such fault-tolerant programs do
not diminish the program run, but
generally go on working where the error
does not influene any more. Usually, this
is the module which has caused the
faulty module.

To be able to develop programs which
are resistant against possible errors the
command On Error can be used. This
command enables to inform the program
how to behave in case of an error. In
this context the commands Goto and
Resume Next are used.

Goto

Syntax: On Error Goto Zielmarke
...
Zielmarke:
...

If any error occurs in the program part
after having used the command On
Error Goto Zielmarke the program
jumps to the aligning mark. Here, the
user can for example be informed about
the error occurred.

Sub Main
 Berechnung
End Sub
Function Berechnung
 On Error GoTo Fehler
 a!=InputBox ("Eingabe Zahl")
 t!=InputBox ("Eingabe Teiler")
 Ergebnis = a!/t!

 Debug.Print Ergebnis
 Exit Function
 Fehler:
 MsgBox("Es ist ein Fehler aufgetreten", 48, "Fehler")
End Function

Program example 57

The program example recognizes input
errors possibly made by the user.
Among these are for example:

- division by 0
- input strings
- no input

Resume Next

Syntax: On Error Resume Next
...

This command effects that a program
line in which an error occurs is skipped.
By doing this errors are avoided, but
may consequently have wrong results of
calculations.

Sub Main
 Berechnung
End Sub
Function Berechnung
 On Error Resume Next
 a!=InputBox ("Eingabe Zahl")
 t!=InputBox ("Eingabe Teiler")
 Ergebnis = a!/t!
 Debug.Print a!;t!;Ergebnis
 Exit Function
End Function

Program example 58

AC I
La se r-C o m p o ne nts

Appendix A – Laser commands

Marking parameters
long Power(Power)
long PowerWait(Power, Wait_ms)
long GetPower()
long QSF(QSF)
long GetQSF()
long QSF_PW(QSF_PW)
long GetQSF_PW()
long Speed(Speed)
long GetSpeed()
long Diameter(Diameter)
long GetDiameter()

double PinAngleX(Angle)
double GetPinAngleX()
double PinAngleY(Angle)
double GetPinAngleY()
BOOL PinX(Pin)
BOOL GetPinX()
BOOL PinY(Pin)
BOOL GetPinY()

long StartStopDelay(StartDelay, StopDelay)
long SetFirstPulse(Pos, Value)
void SetBreakAngleDelay(BreakAngle, BreakDelay)
BOOL SetMirrorX(MirrorX)
BOOL SetMirrorY(MirrorY)
long SetRotation(Rotation)

long SetJumpDelay(Pos, Value)
long SetFirstPulseONDelay(FPONusDelay)
double SetShrinkX(Value);
double GetShrinkX();
double SetShrinkY(Value);
double GetShrinkY();
long SetOffsetX(Value);
long GetOffsetX();
long SetOffsetY(Value);
long GetOffsetY();
BOOL TestMarkingComplete();

AC I
La se r-C o m p o ne nts

Control system
long LaserON()
long LaserOFF()
long LaserStandby()
long GetLaserState() 0=OFF 1=Standby 2=ON
bool LaserShutter(State)
bool LaserPilot(State)

BOOL Input(Port)
void Output(Port, State)

Marking
void Rotation(RotPointX, RotPointY, RotDegree);
void Vector(X1, Y1, X2, Y2)
void Pos(X, Y)
void Rectangle(BaseRef, BasePointX, BasePointY, Width, Height, Fill)
void Rectangle_Filled(BaseRef, BasePointX, BasePointY, Width, Height, Fill)
BOOL Barcode(BarcodeType, ModuleWidth, MainMessage, AddOnMessage,

BaseRef, BaseX, BaseY, MainHigh, AddOnHigh, LongHigh, Inverse)
BOOL DataMatrix(ModuleWidth, Message, rows, cols, ECCtype, style, format, border,

BaseRef, BaseX, BaseY);
void Circle(BaseRef, MidPointX, MidPointY, Radius, AlphaStart, AlphaEnd, Fill)
void Rectangle_Rounded(BaseRef, BasePointX, BasePointY, Width, Height, Radius,

Fill)
BOOL TextTTF(BaseRef, BasePointX, BasePointY, Text, FontName,
 TextHeight, SpaceAdjust, FontWeight, FontItalic, Quality, Fill)
short HPGLOpen(FileName)
void HPGLClose(Handle)
BOOL ImportHPGL(BaseRef, BasePointX, BasePointY, FileName, PenFlag)
void HPGL(Handle, BaseRef, BasePointX, BasePointY, PenFlag)
BOOL Fill(Mode, Size1, Angle1, Size2, Angle2)

Mode: 0 == no fill
1 == parallel 1 line
2 == parallel 2 line
3 == contour
4...7 as 0...3 without object contour

BOOL Polar(PointX, PointY, Radius)
BOOL Size(PointX, PointY, SizeX, SizeY)

AC I
La se r-C o m p o ne nts

Appendix B – Types of barcodes

Types of barcodes

Parameter A Type of barcodep Numbers Letters Length
1 2 of 5 Yes No Variable
2 Interleaved 2 of 5 Yes No Variable
3 Code 39 Yes Capital letters Variable
4 Code 93 Yes Capital letters Variable
5 Codabar Yes No Variable
6 EAN-8 Yes No 7
7 EAN-13 Yes No 12
8 UPC-A Yes No 11
9 UPC-E Yes No 10
10 EAN-128 A Yes Capital letters Variable
11 EAN-128 B Yes Yes Variable
12 EAN-128 C Yes No Even-numbered
13 POSTNET(1.20) Yes No Variable
14 Code-128 A Yes Capital letters Variable
15 Code-128 B Yes Yes Variable
16 Code-128 C Yes No Even-numbered

21 EAN-8+2 Yes/Yes No/No 7/2
22 EAN-8+5 Yes/Yes No/No 7/5
23 EAN-13+2 Yes/Yes No/No 12/2
24 EAN-13+5 Yes/Yes No/No 12/5
25 UPC-A+2 Yes/Yes No/No 11/2
26 UPC-A+5 Yes/Yes No/No 10/5
27 UPC-E+2 Yes/Yes No/No 11/2
28 UPC-E+5 Yes/Yes No/No 10/5

31 PDF417 Yes Yes Variable

	Software Manual
	Contents
	A – Laser commands
	
	
	
	
	Menu
	Features of the dialogue window
	Goto
	Resume Next

	Marking parameters
	Control system
	Marking

